1,290 research outputs found

    An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations

    Get PDF
    In this article we propose a new symmetric version of the interior penalty discontinuous Galerkin finite element method for the numerical approximation of the compressible Navier-Stokes equations. Here, particular emphasis is devoted to the construction of an optimal numerical method for the evaluation of certain target functionals of practical interest, such as the lift and drag coefficients of a body immersed in a viscous fluid. With this in mind, the key ingredients in the construction of the method include: (i) An adjoint consistent imposition of the boundary conditions; (ii) An adjoint consistent reformulation of the underlying target functional of practical interest; (iii) Design of appropriate interior--penalty stabilization terms. Numerical experiments presented within this article clearly indicate the optimality of the proposed method when the error is measured in terms of both the L2-norm, as well as for certain target functionals. Computational comparisons with other discontinuous Galerkin schemes proposed in the literature, including the second scheme of Bassi and Rebay, the standard SIPG method outlined in [Hartmann,Houston-2006], and an NIPG variant of the new scheme will be undertaken

    An A Posteriori Error Indicator for Discontinuous Galerkin Approximations of Fourth Order Elliptic Problems

    Get PDF
    We introduce a residual-based a posteriori error indicator for discontinuous Galerkin discretizations of the biharmonic equation with essential boundary conditions. We show that the indicator is both reliable and efficient with respect to the approximation error measured in terms of a natural energy norm, under minimal regularity assumptions. We validate the performance of the indicator within an adaptive mesh refinement procedure and show its asymptotic exactness for a range of test problems

    Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: Strongly monotone quasi-Newtonian flows

    Get PDF
    In this article we develop both the a priori and a posteriori error analysis of hp–version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω⊂Rd,d \Omega \subset R^{d}, d = 2,3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp–adaptive refinement algorithm

    Qualitative evaluation of the Safety and Improvement in Primary Care (SIPC) pilot collaborative in Scotland: perceptions and experiences of participating care teams

    Get PDF
    Objectives: To explore general practitioner (GP) team perceptions and experiences of participating in a large-scale safety and improvement pilot programme to develop and test a range of interventions that were largely new to this setting. Design: Qualitative study using semistructured interviews. Data were analysed thematically. Subjects and setting: Purposive sample of multiprofessional study participants from 11 GP teams based in 3 Scottish National Health Service (NHS) Boards. Results: 27 participants were interviewed. 3 themes were generated: (1) programme experiences and benefits, for example, a majority of participants referred to gaining new theoretical and experiential safety knowledge (such as how unreliable evidence-based care can be) and skills (such as how to search electronic records for undetected risks) related to the programme interventions; (2) improvements to patient care systems, for example, improvements in care systems reliability using care bundles were reported by many, but this was an evolving process strongly dependent on closer working arrangements between clinical and administrative staff; (3) the utility of the programme improvement interventions, for example, mixed views and experiences of participating in the safety climate survey and meeting to reflect on the feedback report provided were apparent. Initial theories on the utilisation and potential impact of some interventions were refined based on evidence. Conclusions: The pilot was positively received with many practices reporting improvements in safety systems, team working and communications with colleagues and patients. Barriers and facilitators were identified related to how interventions were used as the programme evolved, while other challenges around spreading implementation beyond this pilot were highlighted

    Two-grid hp-version discontinuous Galerkin finite element methods for quasi-Newtonian fluid flows

    Get PDF
    In this article we consider the a priori and a posteriori error analysis of two-grid hp-version discontinuous Galerkin finite element methods for the numerical solution of a strongly monotone quasi-Newtonian fluid flow problem. The basis of the two-grid method is to first solve the underlying nonlinear problem on a coarse finite element space; a fine grid solution is then computed based on undertaking a suitable linearization of the discrete problem. Here, we study two alternative linearization techniques: the first approach involves evaluating the nonlinear viscosity coefficient using the coarse grid solution, while the second method utilizes an incomplete Newton iteration technique. Energy norm error bounds are deduced for both approaches. Moreover, we design an hp-adaptive refinement strategy in order to automatically design the underlying coarse and fine finite element spaces. Numerical experiments are presented which demonstrate the practical performance of both two-grid discontinuous Galerkin methods

    Domain decomposition preconditioners for discontinuous Galerkin discretizations of compressible fluid flows

    Get PDF
    In this article we consider the application of Schwarz-type domain decomposition preconditioners to the discontinuous Galerkin finite element approximation of the compressible Navier-Stokes equations. To discretize this system of conservation laws, we exploit the (adjoint consistent) symmetric version of the interior penalty discontinuous Galerkin finite element method. To define the necessary coarse-level solver required for the definition of the proposed preconditioner, we exploit ideas from composite finite element methods, which allow for the definition of finite element schemes on general meshes consisting of polygonal (agglomerated) elements. The practical performance of the proposed preconditioner is demonstrated for a series of viscous test cases in both two- and three-dimensions

    Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations II: Goal--Oriented A Posteriori Error Estimation

    Get PDF
    In this article we consider the application of the generalization of the symmetric version of the interior penalty discontinuous Galerkin finite element method to the numerical approximation of the compressible Navier--Stokes equations. In particular, we consider the a posteriori error analysis and adaptive mesh design for the underlying discretization method. Indeed, by employing a duality argument (weighted) Type I a posteriori bounds are derived for the estimation of the error measured in terms of general target functionals of the solution; these error estimates involve the product of the finite element residuals with local weighting terms involving the solution of a certain dual problem that must be numerically approximated. This general approach leads to the design of economical finite element meshes specifically tailored to the computation of the target functional of interest, as well as providing efficient error estimation. Numerical experiments demonstrating the performance of the proposed approach will be presented

    Adaptive discontinuous Galerkin methods on polytopic meshes

    Get PDF
    In this article we consider the application of discontinuous Galerkin finite element methods, defined on agglomerated meshes consisting of general polytopic elements, to the numerical approximation of partial differential equation problems posed on complicated geometries. Here, we assume that the underlying computational domain may be accurately represented by a geometry-conforming fine mesh; the resulting coarse mesh is then constructed based on employing standard graph partitioning algorithms. To improve the accuracy of the computed numerical approximation, we consider the development of goal-oriented adaptation techniques within an automatic mesh refinement strategy. In this setting, elements marked for refinement are subdivided by locally constructing finer agglomerates; should further resolution of the underlying fine mesh T_f be required, then adaptive refinement of T_f will also be undertaken. As an example of the application of these techniques, we consider the numerical approximation of the linear elasticity equations for a homogeneous isotropic material. In particular, the performance of the proposed adaptive refinement algorithm is studied for the computation of the (scaled) effective Young's modulus of a section of trabecular bone
    • …
    corecore